Representing Proportional Relationships as Equations

The equation $y=m x$ or $y=k x$ is a \qquad equation.

To be proportional, when $x=0$, then \qquad , also.
This means that on a graph, it passes through the \qquad , which is always point $(0,0)$.

The equation:

- $y=m x$ (which can also be written as $y=k x$).
- "m" is also known as:

1. Slope
2. \qquad
\qquad
\qquad
3. Unit Rate

Remember!!

To find slope, constant of proportionality, unit rate, or "m" you must divide the by the \qquad

or you can divide \qquad by \qquad .

What are the (x, y) points represented by the blue dot on the line?
\qquad , \qquad)

Now, let's find the constant! $\mathrm{m}=\frac{y}{x} \mathrm{~m}=$ \qquad

The value of " x " is \qquad and the value of " y " is
\qquad .
Write the ordered pair of the blue dot (\qquad , \qquad)

Representing Proportional Relationships as Equations

The ordered pair (1,20) means that in \qquad day, the total biking distance is \qquad .

The total number of eggs, T, collected in one day from a chicken coop is proportional to the number of chickens, G_{3} in the coop. If each chicken laid the same number of eggs, 4, write an equation that could be used to find the to'tal number of eggs collected from the coop?
$\mathrm{T}=$ the total number of \qquad
\qquad = the number of chickens.
Constant = each chicken laid the \qquad number of eggs, 4.

The total number of eggs, T, is
\qquad to the number of chickens, C.
$y=m x$ so, $\mathrm{T}=$ \qquad
Pick any two points that falls on the line and write the point below:
(\qquad , ___) -)

Representing Proportional Relationships as Equations

(\qquad , \qquad)

What is the constant of proportionality?

What is the relationship between months, centimeters, and plant growth?

1. After $\mathbf{2}$ hours, the air temperature had risen $7^{\circ} \mathrm{F}$. Write and solve a proportion to find the amount of time it will take at this rate for the temperature to rise an additional $13^{\circ} \mathrm{F}$.
Write a proportion. Let t represent the time in hours.

$$
\begin{array}{rlrl}
\text { temperature } \longrightarrow \begin{aligned}
& 7 \\
& \text { time } \longrightarrow=\frac{13}{t}
\end{aligned} & & \longleftarrow \text { temperature } \\
7 \cdot t & =2 \cdot 13 & & \text { Find the cross product } \\
7 t & =26 & & \text { Multiply } \\
\frac{7 t}{7} & =\frac{26}{7} & & \text { Divide each side by } 7 . \\
t & \approx 3.7 & & \text { Simplify. }
\end{array}
$$

It will take about 3.7 hours to rise an additional $13^{\circ} \mathrm{F}$.
2. If the ratio of Type 0 to non-Type 0 donors at a blood drive was

Try the problem
$37: 43$, how many donors would be Type 0 , out of 300 donors?
Type 0 donors \rightarrow
total donors $\longrightarrow$$\frac{37}{37+43}$ or $\frac{37}{80}$
Write a proportion. Let t represent the number of Type O donors.

$$
\begin{aligned}
& \begin{array}{r}
\text { Type } 0 \text { donors } \longrightarrow \\
\text { total donors } \longrightarrow
\end{array} \frac{37}{80}=\frac{t}{300} \longleftarrow \text { Type } 0 \text { donors } \\
& 37 \cdot 300=80 t \quad \text { Find the cross products. } \\
& 11,100=80 t \quad \text { Multiply } . \\
& \frac{11,100}{80}=\frac{80 t}{80} \quad \text { Divide each side by } 80 . \\
& 138.75=t \quad \text { Simplify. }
\end{aligned}
$$

There would be about 139 Type O donors.

Representing Proportional Relationships as Equations

Try the problem below with a partner.

Evarado paid $\$ 1.12$ for a dozen eggs at his local grocery store. Determine the cost of 3 eggs.
3. Olivia bought 6 containers of yogurt for $\$ 7.68$. Write an equation relating the cost c to the number of yogurts y. How much would Olivia pay for $\mathbf{1 0}$ yogurts at this same rate?

Find the unit rate between cost and containers of yogurt.
$\frac{\text { cost in dollars }}{\text { containers of yogurt }}=\frac{7.68}{6}$ or $\$ 1.28$ per container
The cost is $\$ 1.28$ times the number of containers of yogurt.

$$
\begin{aligned}
c & =1.28 y & & \begin{array}{l}
\text { Let } c \text { represent the cost. Let } y \text { represent } \\
\text { the number of yogurts. }
\end{array} \\
& =1.28(10) & & \text { Replace } y \text { with } 10 . \\
& =12.80 & & \text { Multiply. }
\end{aligned}
$$

The cost for 10 containers of yogurt is $\$ 12.80$.
Try the problem
below with a partner.
Trina earns $\$ 28.50$ tutoring for 3 hours. Write an equation relating her earnings m to the number of hours h she tutors. Assuming the situation is proportional, how much would Trina earn tutoring for 2 hours? for 4.5 hours? (Examples 3 and 4)

Representing Proportional Relationships as Equations

